local area networking modem may also be capable of transmitting and/or receiving data from electronic devices according to various wireless networking techniques, including 6LoWpan, Wi-Fi, Wi-Fi low power, WLAN techniques such as IEEE 802.11 techniques, IEEE 802.15 techniques, IEEE 802.16 techniques, and/or the like.

[0049] The apparatus 10 may comprise memory, such as a subscriber identity module (SIM) 38, a removable user identity module (R-UIM), an eUICC, an UICC, and/or the like, which may store information elements related to a mobile subscriber. In addition to the SIM, the apparatus 10 may include other removable and/or fixed memory. The apparatus 10 may include volatile memory 40 and/or nonvolatile memory 42. For example, volatile memory 40 may include Random Access Memory (RAM) including dynamic and/or static RAM, on-chip or off-chip cache memory, and/or the like. Non-volatile memory 42, which may be embedded and/or removable, may include, for example, read-only memory, flash memory, magnetic storage devices, for example, hard disks, floppy disk drives, magnetic tape, optical disc drives and/or media, non-volatile random access memory (NVRAM), and/or the like. Like volatile memory 40, non-volatile memory 42 may include a cache area for temporary storage of data. At least part of the volatile and/or non-volatile memory may be embedded in processor 20. The memories may store one or more software programs, instructions, pieces of information, data, and/or the like which may be used by the apparatus for performing operations, such as process 200 and/or any other operations/ functions disclosed herein. The memories may comprise an identifier, such as an international mobile equipment identification (IMEI) code, capable of uniquely identifying apparatus 10. The memories may comprise an identifier, such as an international mobile equipment identification (IMEI) code, capable of uniquely identifying apparatus 10. In the example embodiment, the processor 20 may be configured using computer code stored at memory 40 and/or 42 to control and/or provide one or more aspects disclosed herein with respect to process 200 including for example receiving, at a user equipment, measurement configuration information including at least one value for a first type of reference signal received quality measurement; detecting, at the user equipment, whether an offset is received from the network; adjusting the at least one value in accordance with the detected offset to enable a second type of reference signal received quality measurement at the user equipment; and activating the second type of reference signal received quality measurement configured with the adjusted at least one value.

[0050] Some of the embodiments disclosed herein may be implemented in software, hardware, application logic, or a combination of software, hardware, and application logic. The software, application logic, and/or hardware may reside on memory 40, the control apparatus 20, or electronic components, for example. In some example embodiment, the application logic, software or an instruction set is maintained on any one of various conventional computer-readable media. In the context of this document, a "computer-readable medium" may be any non-transitory media that can contain, store, communicate, propagate or transport the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer or data processor circuitry, with examples depicted at FIG. 3, computer-readable medium may comprise a non-transi-

tory computer-readable storage medium that may be any media that can contain or store the instructions for use by or in connection with an instruction execution system, apparatus, or device, such as a computer.

[0051] FIG. 4 depicts an example implementation of a wireless access point 500, which may be implemented at for example base station 110A, B, and/or C in accordance with some example embodiments. The wireless access point may include one or more antennas 520 configured to transmit via downlinks and configured to receive uplinks via the antenna (s) 520. The wireless access point may further include a plurality of radio interfaces 540 coupled to the antenna(s) **520**. The radio interfaces **540** may correspond to a plurality of radio access technologies including one or more of LTE, WLAN, Bluetooth, Bluetooth low energy, NFC, radio frequency identifier (RFID), ultrawideband (UWB), ZigBee, ANT, and the like. The radio interface 540 may include components, such as filters, converters (for example, digitalto-analog converters and the like), mappers, a Fast Fourier Transform (FFT) module, and the like, to generate symbols for a transmission via one or more downlinks and to receive symbols (for example, via an uplink). The wireless access point may further include one or more processors, such as processor 530, for controlling the wireless access point 500 and for accessing and executing program code stored in memory 535. In some example embodiments, the memory 535 includes code, which when executed by at least one processor, causes one or more of the operations described herein with respect to the network at process 200 including for example sending, by a base station, measurement configuration information including at least one value for a first type of reference signal received quality measurement; and sending, by a base station, an offset to signal a user equipment to use a second type of reference signal received quality measurement at the user equipment.

[0052] Without in any way limiting the scope, interpretation, or application of the claims appearing below, a technical effect of one or more of the example embodiments disclosed herein allowing the use of different RSRQ metrics.

[0053] The subject matter described herein may be embodied in systems, apparatus, methods, and/or articles depending on the desired configuration. For example, the base stations and user equipment (or one or more components therein) and/or the processes described herein can be implemented using one or more of the following: a processor executing program code, an application-specific integrated circuit (ASIC), a digital signal processor (DSP), an embedded processor, a field programmable gate array (FPGA), and/or combinations thereof. These various implementations may include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device. These computer programs (also known as programs, software, software applications, applications, components, program code, or code) include machine instructions for a programmable processor, and may be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the term "computer-readable medium" refers to any computer program product, machine-readable medium, computer-read-